Fast, reliable, real-time detection – measure redox-reactive species
- Real-time detection using electrochemical microsensors
- Integrated system includes one temperature sensor, your choice of two additional sensors and a start-up kit
- Current measurement range from 300 fA to 10 µA (four ranges) permits wide dynamic range for detection
- Wide bandwidth allows recording of fast events
- Measure carbon monoxide from 10 nM to 10 µM
- Measure nitric oxide from < 0.3 nM to 100µM
- Measure hydrogen peroxide < 10 nM to 100mM
- Measure hydrogen sulfide
- Measure glucose
- Measure oxygen from 0.1% to 100%
- Isolated architecture allows Lab-Trax interface to simultaneously measure free radical and independent analog data (for example, ECG, BP, etc.) on any channel
- Four channel free radical detection
Benefits
- Measure up to four different species and temperature in the same preparation or simultaneous measurement in four different preparations
- Lab-Trax data acquisition system is flexible
Applications
- Free radical detection (NO, H2O2, H2S, CO, O2 and glucose)
Click here to view the current Data Sheet.
Real-time detection
Real-time detection and measurement of a variety of redox-reactive species is fast and easy using the electrochemical (amperometric) detection principle employed in the TBR4100. This optically isolated four-channel free radical analyzer has ultra low noise and independently operated channels.
Measure multiple species simultaneously
The TBRis designed for use with WPI’s wide range of nitric oxide, hydrogen peroxide, hydrogen sulfide and oxygen sensors. The TBR4100 can measure four different species simultaneously in the same preparation. Simply plug a sensor into the input channel on the front panel and select the current range. Poise voltage can be selected from a range of values tuned for optimal response from WPI sensors. An independent output for real-time monitoring of temperature is also included.
Lab-Trax data acquisition system is flexible
The TBR1025 analyzer utilizes PC-based data acquisition via our Lab-Trax interface. Data traces are displayed and recorded in real-time. The LabScribe software (formerly called DataTrax) comes pre-configured for single or multiple electrode recording; filters, gains, and smoothing are all set for optimal results. Data can be viewed making adjustments to smoothing and filter settings without affecting the original stored raw data. Electrode calibration from multiple concentration readings can be input into the software"s Multipoint Calibration utility quickly provides a plot and slope calculation for electrode sensitivity determination.
Alternately, the Lab-Trax data interface can be used for providing simultaneous acquisition of Free Radical data along with other physiological data (ECG, HR, BP, etc.) as each of the four input channels has its own independent input, filters and 24-bit converter.
Turnkey systems
TBR4100-416 includes TBR4100 analyzer and power cord, Lab-Trax-4/16 data loggersystem and USB cable, 4 BNC cables, 3 electrode adapter cables, 1 temperature probe, 2 sensors of your choice, and sensor start-up kit(s), if applicable.
Manuals
TBR Instruction ManualLabScribe 3 Instruction Manual
Sample Files – ZIP file including hardware and software manuals, NO Demo recording, concentration spreadsheet examples. (Templates_LS3.zip)
Power | 100 ~ 240 VAC, 50-60 Hz, | ||||||||||||||||||||
Operating Temperature (ambient) | 0 - 50°C (32 - 122°F) | ||||||||||||||||||||
Operating Humidity (ambient) | 15 - 70% RH non-condensing | ||||||||||||||||||||
Warm up Time | < 5 min. | ||||||||||||||||||||
Dimensions | 135 X 419 X 217 mm (5.25" X 16.5" X 8.16") | ||||||||||||||||||||
Weight | 1.35 kg (3 lb.) | ||||||||||||||||||||
Display Functions | 18 mm (0.7") LCD readout, 4.5 digit Polarization Voltage (mV) Current input (nA, µA) | ||||||||||||||||||||
Controls | Power (on/off) Current Input Range Polarization Voltage | ||||||||||||||||||||
Analog Output Range | ±10 V (continuous) | ||||||||||||||||||||
Analog Output Impedance | 10 KΩ | ||||||||||||||||||||
Channel to Channel Isolation | >10 GΩ | ||||||||||||||||||||
Channel to Output Isolation | >10 GΩ | ||||||||||||||||||||
Power Supply to AC Line Isolation | >100 MΩ | ||||||||||||||||||||
Analog Output Drift | < 10 pA/hr. | ||||||||||||||||||||
Temperature Input: Number of Channels | 1 | ||||||||||||||||||||
Temperature Input: Sensing Element | Platinum RTD, 1000 Ω | ||||||||||||||||||||
Temperature Input: Range | 0-100°C | ||||||||||||||||||||
Temperature Input: Accuracy | ± 1°C | ||||||||||||||||||||
Temperature Input: Resolution | 0.1°C | ||||||||||||||||||||
Temperature Input: Analog Output | 31.25 mV/°C (continuous) | ||||||||||||||||||||
Amperometric Input: Number of Amperometric Channels | 4 | ||||||||||||||||||||
Amperometric Input: Signal Bandwidth | 0-3 Hz | ||||||||||||||||||||
Amperometric Input: Polarization Voltage (selectable via rotary switch) Nitric Oxide | 865 mV | ||||||||||||||||||||
Amperometric Input: Polarization Voltage (selectable via rotary switch) Hydrogen Sulfide | 150 mV | ||||||||||||||||||||
Amperometric Input: Polarization Voltage (selectable via rotary switch) Hydrogen Peroxide | 450 mV | ||||||||||||||||||||
Amperometric Input: Polarization Voltage (selectable via rotary switch) Glucose | 600 mV | ||||||||||||||||||||
Amperometric Input: Polarization Voltage (selectable via rotary switch) Oxygen | 700 mV | ||||||||||||||||||||
Amperometric Input: Polarization Voltage (selectable via rotary switch) ADJ (user adjustable) | ± 2500 mV | ||||||||||||||||||||
Polarization Voltage Accuracy | ± 5 mV | ||||||||||||||||||||
Polarization Voltage Display Resolution | ± 1mV | ||||||||||||||||||||
Current measurement Performance: |
| ||||||||||||||||||||
Notes: | *Instrument performance is measured as the (max-min) over 20 seconds period with open input. Typical values are given at 3 Hz and 0.3 Hz bandwidth. | ||||||||||||||||||||
Typical sensor performance with TBR4100: ISO-NOPF100 noise | 0.2 nM NO (< 2pA **) | ||||||||||||||||||||
Notes: | **Sensor noise is measured as the (max-min) over a 20 seconds period with the sensor immersed in 0.1 M CuCl2 solution. |
Silveira, N. M., Seabra, A. B., Marcos, F. C. C., Pelegrino, M. T., Machado, E. C., & Ribeiro, R. V. (2019). Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide, 84, 38–44. https://doi.org/10.1016/J.NIOX.2019.01.004
Wang, J., Wang, W., Li, S., Han, Y., Zhang, P., Meng, G., … Ji, Y. (2018). Hydrogen Sulfide As a Potential Target in Preventing Spermatogenic Failure and Testicular Dysfunction. Antioxidants & Redox Signaling, 28(16), 1447–1462. https://doi.org/10.1089/ars.2016.6968
Meng, G., Liu, J., Liu, S., Song, Q., Liu, L., Xie, L., … Ji, Y. (2018). Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. British Journal of Pharmacology, 175(8), 1126–1145. https://doi.org/10.1111/bph.13861
Gonçalves, L. C., Seabra, A. B., Pelegrino, M. T., de Araujo, D. R., Bernardes, J. S., & Haddad, P. S. (2017). Superparamagnetic iron oxide nanoparticles dispersed in Pluronic F127 hydrogel: potential uses in topical applications. RSC Advances, 7(24), 14496–14503. https://doi.org/10.1039/C6RA28633J
Calvo-Begueria, L., Cuypers, B., Van Doorslaer, S., Abbruzzetti, S., Bruno, S., Berghmans, H., … Becana, M. (2017). Characterization of the Heme Pocket Structure and Ligand Binding Kinetics of Non-symbiotic Hemoglobins from the Model Legume Lotus japonicus. Frontiers in Plant Science, 8, 407. https://doi.org/10.3389/fpls.2017.00407
Fang, H., Liu, Z., Long, Y., Liang, Y., Jin, Z., Zhang, L., … Pei, Y. (2017). The Ca 2+ /calmodulin2-binding transcription factor TGA3 elevates LCD expression and H 2 S production to bolster Cr 6+ tolerance in Arabidopsis. The Plant Journal, 91(6), 1038–1050. https://doi.org/10.1111/tpj.13627
Steiger, A. K., Marcatti, M., Szabo, C., Szczesny, B., & Pluth, M. D. (2017). Inhibition of Mitochondrial Bioenergetics by Esterase-Triggered COS/H 2 S Donors. ACS Chemical Biology, 12(8), 2117–2123. https://doi.org/10.1021/acschembio.7b00279
Murine strain differences in inflammatory angiogenesis of internal wound in diabetes. (2017). Biomedicine & Pharmacotherapy, 86, 715–724. https://doi.org/10.1016/J.BIOPHA.2016.11.146
Pokrzywinski, K. L., Tilney, C. L., Warner, M. E., & Coyne, K. J. (2017). Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA. Scientific Reports, 7(1), 45102. https://doi.org/10.1038/srep45102
da Silva, C. J., Batista Fontes, E. P., & Modolo, L. V. (2017). Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana. Plant Science, 256, 148–159. https://doi.org/10.1016/j.plantsci.2016.12.011
Olson, K. R., Gao, Y., DeLeon, E. R., Arif, M., Arif, F., Arora, N., & Straub, K. D. (2017). Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biology, 12, 325–339. https://doi.org/10.1016/j.redox.2017.02.021
Wan, F., Shi, M., & Gao, H. (2017). Loss of OxyR reduces efficacy of oxygen respiration in Shewanella oneidensis. Scientific Reports, 7(1), 42609. https://doi.org/10.1038/srep42609
Maiocchi, S. L., Morris, J. C., Rees, M. D., & Thomas, S. R. (2017). Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents. Biochemical Pharmacology, 135, 90–115. https://doi.org/10.1016/j.bcp.2017.03.016
Santos, S. S., Jesus, R. L. C., Simões, L. O., Vasconcelos, W. P., Medeiros, I. A., Veras, R. C., … Silva, D. F. (2017). NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation. Toxicon, 133, 10–17. https://doi.org/10.1016/j.toxicon.2017.04.010
Bertozo, L. de C., Zeraik, M. L., & Ximenes, V. F. (2017). Dansylglycine, a fluorescent probe for specific determination of halogenating activity of myeloperoxidase and eosinophil peroxidase. Analytical Biochemistry, 532, 29–37. https://doi.org/10.1016/j.ab.2017.05.029
Mogen, A. B., Carroll, R. K., James, K. L., Lima, G., Silva, D., Culver, J. A., … Rice, K. C. (2017). S taphylococcus aureus nitric oxide synthase (saNOS) modulates aerobic respiratory metabolism and cell physiology. Molecular Microbiology, 105(1), 139–157. https://doi.org/10.1111/mmi.13693
Huang, P., Shen, Z., Yu, W., Huang, Y., Tang, C., Du, J., & Jin, H. (2017). Hydrogen Sulfide Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats. Frontiers in Pharmacology, 08, 128. https://doi.org/10.3389/fphar.2017.00128
Zadehvakili, B., McNeill, S. M., Fawcett, J. P., & Giles, G. I. (2016). The design of redox active thiol peroxidase mimics: Dihydrolipoic acid recognition correlates with cytotoxicity and prooxidant action. Biochemical Pharmacology, 104, 19–28. https://doi.org/10.1016/j.bcp.2016.01.012
Xu, T., Scafa, N., Xu, L.-P., Zhou, S., Abdullah Al-Ghanem, K., Mahboob, S., … Zhang, X. (2016). Electrochemical hydrogen sulfide biosensors. The Analyst, 141(4), 1185–1195. https://doi.org/10.1039/C5AN02208H
Oliveira, H. C., Gomes, B. C. R., Pelegrino, M. T., & Seabra, A. B. (2016). Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide, 61, 10–19. https://doi.org/10.1016/j.niox.2016.09.010
Xie, L., Feng, H., Li, S., Meng, G., Liu, S., Tang, X., … Ji, Y. (2016). SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells. Antioxidants & Redox Signaling, 24(6), 329–343. https://doi.org/10.1089/ars.2015.6331
Song, R., Liu, G., Li, X., Xu, W., Liu, J., & Jin, H. (2016). Elevated Inducible Nitric Oxide Levels and Decreased Hydrogen Sulfide Levels Can Predict the Risk of Coronary Artery Ectasia in Kawasaki Disease. Pediatric Cardiology, 37(2), 322–329. https://doi.org/10.1007/s00246-015-1280-8
Silveira, N. M., Frungillo, L., Marcos, F. C. C., Pelegrino, M. T., Miranda, M. T., Seabra, A. B., … Ribeiro, R. V. (2016). Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. Planta, 244(1), 181–190. https://doi.org/10.1007/s00425-016-2501-y
DeLeon, E. R., Gao, Y., Huang, E., Arif, M., Arora, N., Divietro, A., … Olson, K. R. (2016). A case of mistaken identity: are reactive oxygen species actually reactive sulfide species? American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 310(7), R549–R560. https://doi.org/10.1152/ajpregu.00455.2015
Meng, G., Xiao, Y., Ma, Y., Tang, X., Xie, L., Liu, J., … Ji, Y. (2016). Hydrogen Sulfide Regulates Krüppel-Like Factor 5 Transcription Activity via Specificity Protein 1 S-Sulfhydration at Cys664 to Prevent Myocardial Hypertrophy. Journal of the American Heart Association, 5(9). https://doi.org/10.1161/JAHA.116.004160
Ultrasonic micro-droplet release of matrix bound food derived antimicrobials. (2016).
Deng, Q., Xiang, H.-J., Tang, W.-W., An, L., Yang, S.-P., Zhang, Q.-L., & Liu, J.-G. (2016). Ruthenium nitrosyl grafted carbon dots as a fluorescence-trackable nanoplatform for visible light-controlled nitric oxide release and targeted intracellular delivery. Journal of Inorganic Biochemistry, 165, 152–158. https://doi.org/10.1016/J.JINORGBIO.2016.06.011
Wonoputri, V., Gunawan, C., Liu, S., Barraud, N., Yee, L. H., Lim, M., & Amal, R. (2016). Iron Complex Facilitated Copper Redox Cycling for Nitric Oxide Generation as Nontoxic Nitrifying Biofilm Inhibitor. ACS Applied Materials & Interfaces, 8(44), 30502–30510. https://doi.org/10.1021/acsami.6b10357
Nguyen, T.-K., Selvanayagam, R., Ho, K. K. K., Chen, R., Kutty, S. K., Rice, S. A., … Boyer, C. (2016). Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles. Chem. Sci., 7(2), 1016–1027. https://doi.org/10.1039/C5SC02769A
Chen, G., Yang, L., Zhong, L., Kutty, S., Wang, Y., Cui, K., … Bin, J. (2016). Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury. Scientific Reports, 6(1), 30643. https://doi.org/10.1038/srep30643
Zhang, W., Zhang, Y. S., Bakht, S. M., Aleman, J., Shin, S. R., Yue, K., … Khademhosseini, A. (2016). Elastomeric free-form blood vessels for interconnecting organs on chip systems. Lab on a Chip, 16(9), 1579–1586. https://doi.org/10.1039/C6LC00001K
Huang, P., Chen, S., Wang, Y., Liu, J., Yao, Q., Huang, Y., … Jin, H. (2015). Down-regulated CBS/H2S pathway is involved in high-salt-induced hypertension in Dahl rats. Nitric Oxide, 46, 192–203. https://doi.org/10.1016/j.niox.2015.01.004
Zong, Y., Huang, Y., Chen, S., Zhu, M., Chen, Q., Feng, S., … Jin, H. (2015). Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt. Oxidative Medicine and Cellular Longevity, 2015, 1–11. https://doi.org/10.1155/2015/754670
Park, Y. M., Lee, H. J., Jeong, J.-H., Kook, J.-K., Choy, H. E., Hahn, T.-W., & Bang, I. S. (2015). Branched-chain amino acid supplementation promotes aerobic growth of Salmonella Typhimurium under nitrosative stress conditions. Archives of Microbiology, 197(10), 1117–1127. https://doi.org/10.1007/s00203-015-1151-y
Wonoputri, V., Gunawan, C., Liu, S., Barraud, N., Yee, L. H., Lim, M., & Amal, R. (2015). Copper Complex in Poly(vinyl chloride) as a Nitric Oxide-Generating Catalyst for the Control of Nitrifying Bacterial Biofilms. ACS Applied Materials & Interfaces, 7(40), 22148–22156. https://doi.org/10.1021/acsami.5b07971
Ostrakhovitch, E. A., Akakura, S., Sanokawa-Akakura, R., Goodwin, S., & Tabibzadeh, S. (2015). Dedifferentiation of cancer cells following recovery from a potentially lethal damage is mediated by H2S–Nampt. Experimental Cell Research, 330(1), 135–150. https://doi.org/10.1016/j.yexcr.2014.09.027
Sun, Y., Huang, Y., Zhang, R., Chen, Q., Chen, J., Zong, Y., … Jin, H. (2015). Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats. Journal of Molecular Medicine, 93(4), 439–455. https://doi.org/10.1007/s00109-014-1227-1
Cho, Y., Park, Y. M., Barate, A. K., Park, S.-Y., Park, H. J., Lee, M. R., … Holden, D. (2015). The role of rpoS , hmp , and ssrAB in Salmonella enterica Gallinarum and evaluation of a triple-deletion mutant as a live vaccine candidate in Lohmann layer chickens. Journal of Veterinary Science, 16(2), 187. https://doi.org/10.4142/jvs.2015.16.2.187
Bełtowski, J., Guranowski, A., Jamroz-Wiśniewska, A., Wolski, A., & Hałas, K. (2015). Hydrogen-sulfide-mediated vasodilatory effect of nucleoside 5′-monophosphorothioates in perivascular adipose tissue. Canadian Journal of Physiology and Pharmacology, 93(7), 585–595. https://doi.org/10.1139/cjpp-2014-0543
Mocca, B., Yin, D., Gao, Y., & Wang, W. (2015). Moraxella catarrhalis -produced nitric oxide has dual roles in pathogenicity and clearance of infection in bacterial-host cell co-cultures. Nitric Oxide, 51, 52–62. https://doi.org/10.1016/j.niox.2015.10.001
Orellano, L. A. A., Almeida, S. A., Campos, P. P., & Andrade, S. P. (2015). Angiopreventive versus angiopromoting effects of allopurinol in the murine sponge model. Microvascular Research, 101, 118–126. https://doi.org/10.1016/j.mvr.2015.07.003
Tan, L., Wan, A., Zhu, X., & Li, H. (2014). Visible light-triggered nitric oxide release from near-infrared fluorescent nanospheric vehicles. The Analyst, 139(13), 3398. https://doi.org/10.1039/c4an00275j
Liu, S., Gu, T., Fu, J., Li, X., Chronakis, I. S., & Ge, M. (2014). Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide. Materials Science and Engineering: C, 45, 37–44. https://doi.org/10.1016/j.msec.2014.08.070
Sanokawa-Akakura, R., Ostrakhovitch, E. A., Akakura, S., Goodwin, S., & Tabibzadeh, S. (2014). A H 2 S-Nampt Dependent Energetic Circuit Is Critical to Survival and Cytoprotection from Damage in Cancer Cells. https://doi.org/10.1371/journal.pone.0108537
Dantas, B. P. V, Ribeiro, T. P., Assis, V. L., Furtado, F. F., Assis, K. S., Alves, J. S., … Braga, V. A. (2014). Vasorelaxation induced by a new naphthoquinone-oxime is mediated by NO-sGC-cGMP pathway. Molecules (Basel, Switzerland), 19(7), 9773–9785. https://doi.org/10.3390/molecules19079773
Dunlop, K., Gosal, K., Kantores, C., Ivanovska, J., Dhaliwal, R., Desjardins, J.-F., … Jankov, R. P. (2014). Therapeutic hypercapnia prevents inhaled nitric oxide-induced right-ventricular systolic dysfunction in juvenile rats. Free Radical Biology and Medicine, 69, 35–49. https://doi.org/10.1016/j.freeradbiomed.2014.01.008
Yarmolinsky, D., Brychkova, G., Kurmanbayeva, A., Bekturova, A., Ventura, Y., Khozin-Goldberg, I., … Sagi, M. (2014). Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants. Plant Physiology, 165(4), 1505–1520. https://doi.org/10.1104/pp.114.241356
Diniz, T., Pereira, A., Capettini, L., Santos, M., Nagem, T., Lemos, V., & Cortes, S. (2013). Mechanism of the Vasodilator Effect of Mono-oxygenated Xanthones: A Structure-Activity Relationship Study. Planta Medica, 79(16), 1495–1500. https://doi.org/10.1055/s-0033-1350803
Process of food preservation with hydrogen sulfide. (2013).
Dick, A. S., Ivanovska, J., Kantores, C., Belcastro, R., Keith Tanswell, A., & Jankov, R. P. (2013). Cyclic stretch stimulates nitric oxide synthase-1-dependent peroxynitrite formation by neonatal rat pulmonary artery smooth muscle. Free Radical Biology and Medicine, 61, 310–319. https://doi.org/10.1016/j.freeradbiomed.2013.04.027
Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds. (2013).
Olson, K. R., DeLeon, E. R., Gao, Y., Hurley, K., Sadauskas, V., Batz, C., & Stoy, G. F. (2013). Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Comp Physiol, 305, 592–603. https://doi.org/10.1152/ajpregu.00421.2012
Araújo, F. A., Rocha, M. A., Capettini, L. S. A., Campos, P. P., Ferreira, M. A. N. D., Lemos, V. S., & Andrade, S. P. (2013). 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (fluvastatin) decreases inflammatory angiogenesis in mice. APMIS, 121(5), 422–430. https://doi.org/10.1111/apm.12031
Aljuhani, N., Michail, K., Karapetyan, Z., & Siraki, A. G. (2013). The effect of bicarbonate on menadione-induced redox cycling and cytotoxicity: potential involvement of the carbonate radical. Canadian Journal of Physiology and Pharmacology, 91(10), 783–790. https://doi.org/10.1139/cjpp-2012-0254
Tan, L., Wan, A., & Li, H. (2013). Ag 2 S Quantum Dots Conjugated Chitosan Nanospheres toward Light-Triggered Nitric Oxide Release and Near-Infrared Fluorescence Imaging. Langmuir, 29(48), 15032–15042. https://doi.org/10.1021/la403028j
Catalytic oxidation of sulphide species. (2012).
Andrews, A. M. (2012). SHEAR STRESS-INDUCED NITRIC OXIDE (NO) PRODUCTION: MECHANISMS AND THE INHIBITORY EFFECT OF CHOLESTEROL ENRICHMENT.
An, J., Du, J., Wei, N., Guan, T., Camara, A. K. S., & Shi, Y. (2012). Differential Sensitivity to LPS-Induced Myocardial Dysfunction in the Isolated Brown Norway and DAHL S Rat Hearts. Shock, 37(3), 325–332. https://doi.org/10.1097/SHK.0b013e31823f146f
Liu, J. T., Song, E., Xu, A., Berger, T., Mak, T. W., Tse, H.-F., … Wang, Y. (2012). Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. British Journal of Pharmacology, 165(2), 520–531. https://doi.org/10.1111/j.1476-5381.2011.01587.x
Fox, B., Schantz, J.-T., Haigh, R., Wood, M. E., Moore, P. K., Viner, N., … Whiteman, M. (2012). Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? Journal of Cellular and Molecular Medicine, 16(4), 896–910. https://doi.org/10.1111/j.1582-4934.2011.01357.x
Liu, J. T., Song, E., Xu, A., Berger, T., Mak, T. W., Tse, H.-F., … Wang, Y. (2012). Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. British Journal of Pharmacology, 165(2), 520–531. https://doi.org/10.1111/j.1476-5381.2011.01587.x
Marazioti, A., Bucci, M., Coletta, C., Vellecco, V., Baskaran, P., Szabó, C., … Papapetropoulos, A. (2011). Inhibition of Nitric Oxide–Stimulated Vasorelaxation by Carbon Monoxide-Releasing Molecules. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(11), 2570–2576. https://doi.org/10.1161/ATVBAHA.111.229039
Young, L. H., Chen, Q., & Weis, M. T. (2011). Direct Measurement of Hydrogen Peroxide (H 2 O 2 ) or Nitric Oxide (NO) Release: A Powerful Tool to Assess Real-time Free Radical Production in Biological Models. Am. J. Biomed. Sci, 3(1), 40–48. https://doi.org/10.5099/aj110100040
Araújo, F. A., Rocha, M. A., Ferreira, M. A., Campos, P. P., Capettini, L. S., Lemos, V. S., & Andrade, S. P. (2011). Implant-induced intraperitoneal inflammatory angiogenesis is attenuated by fluvastatin. Clinical and Experimental Pharmacology and Physiology, 38(4), 262–268. https://doi.org/10.1111/j.1440-1681.2011.05496.x
Leistikow, R. L., Morton, R. A., Bartek, I. L., Frimpong, I., Wagner, K., & Voskuil, M. I. (2010). The Mycobacterium tuberculosis DosR Regulon Assists in Metabolic Homeostasis and Enables Rapid Recovery from Nonrespiring Dormancy. Journal of Bacteriology, 192(6), 1662–1670. https://doi.org/10.1128/JB.00926-09
Honaker, R. W., Dhiman, R. K., Narayanasamy, P., Crick, D. C., & Voskuil, M. I. (2010). DosS Responds to a Reduced Electron Transport System To Induce the Mycobacterium tuberculosis DosR Regulon. Journal of Bacteriology, 192(24), 6447–6455. https://doi.org/10.1128/JB.00978-10
Andrews, A. M., Jaron, D., Buerk, D. G., Kirby, P. L., & Barbee, K. A. (2010). Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro. Nitric Oxide, 23(4), 335–342. https://doi.org/10.1016/j.niox.2010.08.003
Pandolfi, C., Pottosin, I., Cuin, T., Mancuso, S., & Shabala, S. (2010). Specificity of Polyamine Effects on NaCl-induced Ion Flux Kinetics and Salt Stress Amelioration in Plants. Plant and Cell Physiology, 51(3), 422–434. https://doi.org/10.1093/pcp/pcq007
Whiteman, M., Li, L., Rose, P., Tan, C.-H., Parkinson, D. B., & Moore, P. K. (2010). The Effect of Hydrogen Sulfide Donors on Lipopolysaccharide-Induced Formation of Inflammatory Mediators in Macrophages. Antioxidants & Redox Signaling, 12(10), 1147–1154. https://doi.org/10.1089/ars.2009.2899
Lateef, H., Aslam, M. N., Stevens, M. J., & Varani, J. (2005). Pretreatment of diabetic rats with lipoic acid improves healing of subsequently-induced abrasion wounds. Archives of Dermatological Research, 297(2), 75–83. https://doi.org/10.1007/s00403-005-0576-6
"The Effects of Modulating Endothelial Nitric Oxide Synthese (eNOS) Activity and Coupling in Extracorporeal Shock Wave Lithotripsy (ESWL)" by Alexandra Lopez. (n.d.). Retrieved November 12, 2018, from https://works.bepress.com/qian_chen/25/
- IGS100 Implantable Glucose SensorIGS100For pricing, Customers outside of the US and Canada, please contact your distributor.
- Nitric Oxide Sensor - 2mmISO-NOPFor pricing, Customers outside of the US and Canada, please contact your distributor.
- Hydrogen Peroxide Macro SensorISO-HPO-2For pricing, Customers outside of the US and Canada, please contact your distributor.
- Hydrogen Peroxide MicrosensorsMultiple SKUs
- ISO-NOPF Flexible Nitric Oxide SensorMultiple SKUs
- ISO-NOPNM Nitric Oxide Sensor - 100nmISO-NOPNMFor pricing, Customers outside of the US and Canada, please contact your distributor.
- Temperature SensorISO-TEMP-2For pricing, Customers outside of the US and Canada, please contact your distributor.
- ISO-OXY-2 Oxygen Sensor - 2mmISO-OXY-2For pricing, Customers outside of the US and Canada, please contact your distributor.
The video below shows how to calibrate your oxygen sensor (6 minutes).